
Chapter 1-5 Recap Questions

	escribe the similaritie		ds and gravitational field	
•••••				
•••••				
2 D4	escribe the difference	es hetween electric fiel	ds and gravitational field	Ic
2. De	escribe the difference		ds and gravitational field	
2. De				

A small loudspeaker emitting sound of constant frequency is positioned a short distance above a long glass tube containing water. When water is allowed to run slowly out of the tube, the intensity of the sound heard increases whenever the length l (shown above) takes certain values.

(a)	Explain these observations by reference to the physical principles involved.
	You may be awarded marks for the quality of written communication in your answer.

(b)		the loudspeaker emitting soun ed first when $l = 168$ mm. It ne		z, the effect described in part (a) is 23 mm.
	Use 1	both values of <i>l</i> to calculate		
	(i)	the wavelength of the sound	waves in the air colum	nn,
	(ii)	the speed of these sound wav	Ac	
	(11)	wav		
				(4) (Total 8 marks)
4	sate ear	ellites orbit the earth in a circle	above the equator, and es orbit in circular orbi	"and "low polar". Geo-synchronous and maintain the same position above the its of smaller radius, with their orbits
		communication satellite	monito satellit	•
(\	(In	
		geosynchronous orbit	K.	
		oron	low polar orbit	not to scale
Com (a)		ations satellites are usually place t is the period of a satellite in a		it?
b)	The	mass of the Earth $6.00 \times 10^{24} \text{k}$	a and its mean radius i	(1) is $6.40 \times 10^6 \text{ m}$
U)	(i)	Show that the radius of a geo		_

•		
•		
•		(Total 7 m
	A trolley of mass 0.80 kg rests on a horizontal surface attached to two identical s springs, as shown in Figure 3 . Each spring has a spring constant of 30 N m ⁻¹ , ca assumed to obey Hooke's law, and to remain in tension as the trolley moves.	
	Figure 3	
	fixed spring trolley spring fixed	
(i)	The trolley is displaced to the left by $60\mathrm{mm}$ and then released. Show that the magnitude of the resultant force on it at the moment of release is $3.6\mathrm{N}$.	
		2 marks)
ii)	Calculate the acceleration of the trolley at the moment of release and state its dir	
ii)		
ii)		
(ii)		
(ii)		

5.